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ABSTRACT: Amphiphilic sensitizers are central to the function of dye-
sensitized solar cells. It is known that the cell’s performance depends on the
molecular arrangement and the density of the dye on the semiconductor
surface, but a molecular-level picture of the cell—electrolyte interface is still
lacking. Here, we present subnanometer in situ atomic force microscopy
images of the Z907 dye at the surface of TiO, in a relevant liquid. Our
results reveal changes in the conformation and the lateral arrangement of
the dye molecules, depending on their average packing density on the
surface. Complementary quantitative measurements on the ensemble of the
film are obtained by the quartz-crystal microbalance with dissipation
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technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as
blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations.
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1. INTRODUCTION

Surface functionalization with self-assembled monolayers
(SAMs) is of fundamental importance to nanotechnology,
with applications ranging from molecular electronics to
controlled wetting, sensing, medical devices, and energy
harvesting systems.'”> SAM functionalization provides a
powerful, yet simple way to manipulate the chemical, electrical,
and optical properties of surfaces, with the ability to tune the
material’s macroscopic properties.® This is the case for dye-
sensitized solar cells (DSCs) where a SAM of dye molecules
sensitizes a semiconductor in order to harvest light. DSCs
provide a viable alternative to traditional semiconductor solar
cells due to their high efficiency and low environmental and
industrial costs.”” "' The heart of the DSC is composed of the
dye SAM adsorbed on a wide-bandgap semiconductor, usually a
high surface area mesoporous TiO, photoanode, infiltrated with
an electrolyte containing the redox shuttle molecule. The
primary role of the dye SAM is to sensitize the TiO,
semiconductor, similar to sensitization of silver halides in
paper photography. Upon illumination, the dye goes into a
photoexcited state and can inject an electron into the
conduction band of the semiconductor. The oxidized dye is
regenerated by a hole conductor, traditionally a liquid
electrolyte, covering the dye and containing a redox mediator.
The molecular dye film has also a secondary function: it must
act as an electronic barrier that prevents the photoinjected
electrons to recombine with the oxidized form of the redox
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mediator present in the electrolyte. For typical dye molecules,
this is ensured by hydrophobic alkyl chains that hinder the
redox-mediator from accessing the semiconductor surface, and
prevent lateral aggregation of dye molecules. The anchoring
groups of the dye, usually carboxylic acids, are hydrophilic,
which gives the dye an amphiphilic character and behavior
often similar to anionic surfactants. The DSC macroscopic
efficiency is known to depend on both the molecular
arrangement of the adsorbed dye layer and the contacting
electrolyte. This is generally true for most SAM-functionalized
surfaces, which requires linking in situ molecular-level details
with macroscopic observations in order to derive a full
understanding."

Practically, gaining in situ information about the molecular
arrangement of dye-sensitizers often proves challenging.
Fourier transform infrared spectroscopy was successfully used
to observe the binding of dye molecules to the TiO, surface of
DSCs.”"® The average orientation of adsorbed molecules
relative to the surface could be derived from combined near-
edge X-ray absorption fine structure spectroscopy (NEXAFS)
and photoelectron spectroscopy (PES)."*”'® However, the
irregular mesoporous titania surface prevents averaging
techniques from capturing local molecular details. Scanning
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probe techniques can, in principle, overcome this difficulty and
provide direct, local information about the adsorbed layer.
Scanning tunneling microscopy studies in ultrahigh vacuum
achieved the first submolecular resolution images of the dye
layer, but the measurements were conducted far from the
functional conditions of a DSC."”'® Ex situ atomic force
microscopy (AFM) results indicated the existence of large dye
aggregates on the flat TiO, substrate for standard device
preparation procedure, but molecular resolution was not
achieved."

Recent developments in the field of AFM have made it
possible to achieve subnanometer mapping of soft and hard
surfaces in solution paving the way for in situ local observations
of a functional DSC surface.”*~**

Here, we report in situ molecular-level AFM images of
adsorbed dye molecules at mesoporous and flat TiO, surfaces
in a device-relevant liquid. We used the amphiphilic ruthenium
complex 7907 (diphenyl-nonyl diphenyl-carboxyl dithio
octaruthenium) dye (insert in Figure 2) due to its widespread
use in DSCs, its good performance in long-term stability tests,
and the fact that it is less prone to aggregation than other
dyes.”>** The AFM study is conducted with the sample fully
immersed either in ethyl-isoproyl sulfone (EiPS), or acetonitrile
(MeCN), both solvents being used for electrolytes in functional
DSCs. We show that under normal conditions, the dye forms a
single monolayer over the surface. The molecular conformation
of the dye depends on the density coverage with domains of
different molecular conformation able to coexist within the
adsorbed submonolayer. The AFM results are complemented
with measurements conducted using the quartz crystal
microbalance with dissipation technique (QCM-D) so as to
assess the average quantity of adsorbed molecules on the
substrate with respect to coverage saturation. The experimental
AFM and QCM-D results are supported by molecular dynamics
(MD) simulations of dyes adsorbed on the (101) facet of
anatase TiO, immersed in acetonitrile solvent.”>™>’ The
simulations provide atomic-level insight into the density-
dependent changes in the arrangement of the adsorbed Z907
molecules.

2. METHODS

2.1. AFM. The AFM data were acquired on a commercial
Multimode Nanoscope Illa (Digital Instruments, now Bruker, Santa
Barbara, CA) operated in amplitude-modulation. The sample and the
scanning tip were fully immersed into the imaging liquid (EiPS or
MeCN, respectively). Before each experiment, the liquid cell was
thoroughly washed in isopropanol and ultrapure water and
subsequently dried with nitrogen. We used standard silicon nitride
cantilevers (Olympus RC800 PSA, Olympus, Tokyo) with a nominal
stiffness of k, = 0.76 N/m. In each experiment, the cantilever was
driven acoustically with the liquid cell, close to its resonance
frequency. Typical imaging amplitudes A were kept between 0.5 and
1.5 nm with the set point ratio A/A, as large as possible (4, is the free
vibration amplitude in liquid). The use of relatively soft cantilevers and
working amplitudes commensurate with the thickness of the sample—
liquid interface allow us to exploit short-range solvation forces so as to
enhance the resolution. In these particular imaging conditions, the
energy dissipated by the vibrating AFM tip is not sufficient to fully
remove the liquid between the tip and the sample, and the tip mainly
probes the properties of the interfacial liquid at the surface of the
sample."”*>*® The phase contrast is then related to the local wetting
properties of the sample, that is, the local solvation free energy'*** or,
at the macroscopic level, the solid—liquid work of adhesion. In
practice, imaging over the TiO, substrate provides a darker phase
contrast than over the Z907 regions, indicating a higher affinity of the

solvent for the substrate than for the dye-covered surface (Figure 3c).
If larger imaging amplitudes are used, the phase contrast then reflects
mainly the mechanical properties of the sample, but working at large
amplitudes is generally detrimental for resolution.”®

2.2. QCM-D. The quartz microbalance with dissipation technique
(QCM-D) directly measures mass uptake on a sensor crystal inside a
flow cell. It also allows for simultaneous detection of the viscoelastic
properties of the adsorbed molecular layer. In the Q-Sense E4
instrument we are using, the quartz crystal sensor is contacted by gold
electrodes, and its sensing side is coated with 67 nm of TiO, by the
same atomic layer deposition (ALD) process that is used for coating
the silicon substrates used for AFM measurements. The sensor is
placed into a flow cell where its TiO, side can be exposed to liquid dye
solution in order to measure mass change in situ. Given the molecular
weight of the Z907 dye molecule, the QCM-D technique is sensitive
enough to quantify submonolayers of adsorbed molecules on flat TiO,
film; see Harms et al.>’ for details.

2.3. Computational Methods. Classical MD simulations were
performed for different dye coverage and various packing modes and
molecular orientations. The TiO, surface was described by the
Bandura Kubicki force field, whereas for the Z907 dye, a force field was
developed following the AMBER protocol.>® ™" Classical point
charges were derived using the RESP procedure except for the
carboxylic anchoring groups whose charges were chosen in such a way
as to reproduce the experimental adsorption energy.>*** For this
purpose we used the Gaussian 09 Package.>* The force field was
validated via full ab initio simulations of a single dye in vacuum. A
united atom optimized potentials for liquid simulations (OPLS) force
field was employed for acetonitrile.®

Experimental and computational studies have suggested different
binding modes for Z907 and similar dyes.”**™3® Initial tests showed
that the different binding modes (dissociative, bidentate, or
monodentate) hardly affect the space occupied by each dye and
hence have little influence on the overall packing geometries. For all
studies presented here, we thus have adopted a single, nondissociative
bidendate binding mode.

Initial models of the system composed of two layers of anatase TiO,
(108 x 113 A? for low and medium coverage and 54 X 56 A” for high
coverage) were constructed using Materials Studio.’® Molecular
dynamics simulations were gerformed with the Amber 12 package
using the PMEMD module.”

Production runs of about 20 ns in the NVE ensemble were sampled
after initial minimization and S ns of equilibration in the canonical
ensemble using Nosé—Hoover thermostats at room temperature (300
K).

2.4. Sample Preparation. TiO, samples for AFM measurements
were based on a (100) silicon wafer substrate coated with titanium
dioxide by atomic layer deposition from a tetrakis (dimethylamino)
titanium (TDMAT) precursor, as described previously.*® The TiO,
film of 67 nm thickness was annealed at 420 °C and had a surface
roughness of ~2.0 nm on a 4 ym AFM frame. X-ray diffraction of the
film showed evidence of anatase crystallites but no rutile phase
(Supporting Information). The Z907 pigment was dissolved in a 1:1
volumetric mixture of tert-butanol and acetonitrile, and a solution of
50.0 M concentration was quantified by an absorption measurement
using the published extinction coefficient of 12200 M™' cm™; lower
concentrations were obtained by dilution.*®

Prior to staining, the AFM substrates were cleaned by UV—ozone
for 10 min and subsequently heated for 30 min at 420 °C to remove
organic residuals and excess water from the TiO, surface. After cooling
to 70 °C, they were immersed into the dye solution for 30 min, rinsed
in '‘BuOH:MeCN mixture, immersed in MeCN for 30 min, stained
again for 10 min, rinsed in ‘BuOH:MeCN mixture and MeCN, and
subsequently stored in MeCN in the dark.

Samples destined for AFM measurements were usually transferred
to EiPS as an imaging liquid. EiPS is a main constituent in nonvolatile
high-voltage electrolytes that are used in industrial applications of dye-
sensitized solar cells.*"** EiPS was chosen for its relevance in DSC
applications and for its low vapor pressure (compared to MeCN),
making it is easier to reach stable imaging conditions at high
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resolution. Aside from experimental considerations, no differences
could be seen in the images obtained in MeCN and EiPS (Supporting
Information, Figure S1).

3. RESULTS

Figure 1 shows a high-resolution image of the surface of a DSC
in a functionally relevant liquid. The measurement, conducted

Figure 1. High-resolution AFM image of the surface of a DSC in
liquid. The surface is composed of mesoporous TiO, stained with the
7907 ruthenium dye. The TiO, nanoparticles are clearly visible in the
main image. (Inset) Molecular detail of the dye arrangement at the
edge of a nanoparticle with some ordering visible (arrows). The scale
bars are (main image) 40 nm and (inset) 3 nm. The color scale is
(main image) 70 nm and (inset) 6 nm.

with AFM in EiPS, provides unique insight into the
subnanometer details of the device’s surface and indicates
some structure in the dye layer. The dye molecules appear to be
arranged along some preferential directions (arrows in the
inset) although no long-range order is visible. However, these
results should be taken cautiously due to the high surface
curvature of mesoporous TiO,, which renders AFM imaging
challenging due to tip-convolution effects. An additional
difficulty arises from the fact that dye molecules tend to
accumulate primarily in holes and surface grooves at
intermediate coverage, making a study of the dye molecular
arrangement as a function of surface coverage difficult.

To overcome these difficulties, we have used flat TiO,
substrates throughout this study. The substrates, obtained by
atomic layer deposition, present a sufficiently low roughness on
the nanoscale to avoid ambiguous interpretation of the AFM
results. For each sample, the actual surface coverage is
determined by QCM-D so as to ensure that the local AFM
observations reflect global surface properties. The adsorption
behavior of the same Z907—TiO, system has previously been
studied by using a QCM-D.”” Figure 2 shows the adsorption
isotherm for Z907 on flat TiO, films. The figure uses previously
published data®” as a reference for comparison with the current
measurements. The isotherm follows a Langmuir-type behavior
(red line), indicating a saturation value of 103 ng cm™ area
mass uptake over the concentration range on display. This
corresponds to 0.76 molecules/nm?, or a molecular footprint of
1.31 nm?*/molecule when assuming a flat surface. We define this
saturation value as 100% mass coverage, which should
correspond to a densely packed monolayer of Z907. For
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Figure 2. QCM-D area mass uptake over concentration of sensitizing
dye solution with a Langmuir isotherm fitted to the data. Blue data
points are taken from previously published experiments.”” Green
crosses mark the three concentrations of dye solutions used for
staining the AFM samples and indicate their corresponding mass
coverage. (Inset) Structure of the Z907 ruthenium dye.

staining the AFM samples, dye concentrations were chosen
such that a mass coverage of approximately 30, 60, or 100% was
obtained (green data crosses in Figure 2).

A representative AFM topographic image of the flat TiO,
surface after sensitization with dye molecules (30% mass
coverage) is shown in Figure 3a. The image shows large
protrusions (20—30 nm wide, and ~2 nm high) that are related
to the roughness of the TiO, substrate. Details of the dye
molecules are already visible, appearing as a subnanometer,
mostly homogeneous roughness on the surface. This is
confirmed in higher magnification images of the sample
where the dye film appears as homogeneous sponge-like
structure (Figure 3a, inset). Using harsh imaging conditions, it
is possible to mechanically remove dye molecules in selected
regions by scratching. The scratched region, which corresponds
to the TiO, substrate, appears darker in the phase image
(purple arrow, Figure 3b,c). This phase contrast indicates a
higher affinity of the solvent for the TiO, than for the dye, and
could be consistently used throughout this study to identify
dye-covered (light) and uncovered (dark) regions.'>** At 30%
mass coverage, the dye layer exhibits dark spots in the phase,
suggesting that uniform gaps exist between the adsorbed Z907
molecules. These gaps give the apparent sponge-like appear-
ance to the dye layer topography. The thickness of the dye film
is difficult to evaluate directly from Figure 3a due to the
roughness of the substrate. It is, however, possible to use the
exposed TiO, region as a reference. A line profile taken at the
edge of the dye layer indicates a thickness of ~0.6 nm (Figure
3d). This value is a lower estimate of the real thickness due to
the mechanical perturbation induced by the AFM tip on the
dye molecules during the imaging process.

A closer look at Figure 3a reveals occasional variations in the
height of the dye layer over flat substrate regions (blue arrows).
These regions hint to local variations of the Z907 molecular
arrangement on the substrate surface, which could be related to
the density of dye molecules. To examine this effect in a
systematical manner, we acquired high-resolution AFM images
of the dye layer at different mass coverage, as determined by
QCM-D.

Representative AFM images are presented in Figure 4 for 0,
30, 60, and 100% mass coverage. A clear trend is visible in both
the topography and the phase with the increase of dye
coverage. The bare substrate (0%) appears relatively rough, the
image is noisy and provides little phase contrast. At 30% mass
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Figure 3. AFM micrographs of a TiO, surface covered with Z907 ruthenium dye (30% mass coverage). (a) A low-magnification (100 nm)
topographic image shows almost uniform coverage by the dye apart for a few higher dye domains (blue arrows). The ~20 nm wide protrusions
(white arrows) are related to the substrate roughness. Higher resolution (b) topographic and (c) phase images of the surface reveal a sponge-like
structure of the dye layer (white arrow). The substrate can also be exposed by scratching with the AFM tip. The exposed TiO, substrate (purple
arrow) exhibit a clear phase contrast (dotted red line) with the lighter Z907 domains. (d) Topographic profile taken over the TiO,-Z907 border
(blue line in panel b) indicates a thickness of ~0.6 nm for the Z907 dye layer. The topographic images are always represented with an orange—blue
color scale, and the phase images in blue—black throughout the paper. Scale bars are (a) 10 nm and (b and c) 3 nm. Color bars are (2 and b) 3 nm

and (c) 15°.

60% 100%

Topography

Phase

Figure 4. High-resolution AFM images of the dye layer at 0, 30, 60, and 100% mass coverage obtained in similar imaging conditions. At 0% the
substrate appears rough and noisy due to short-range tip—sample attractive interactions. At 30%, the dye molecules (white arrow) assemble in a soft
sponge-like disordered structure that can easily be disrupted by the AFM tip. Multiples holes are visible in the layer (red arrow) and appear darker in
the phase. At 60%, the layer is partially ordered with the apparition of rows (white arrow) and less ordered lower regions (green arrow). At 100% the
surface is fully covered, it appears smooth, and only dye rows are visible (white arrows). The scale bar is 2 nm and the color scales are 1 nm
(topography) and 15° in all images.

coverage, 1—3 nm wide dye features are visible in both be attributed to the substrate, while the top of the layer is due
topography and the phase, and form a soft sponge-like layer to dye molecules and appear already more regular and
probably templated by the atomic structure of the TiO, smoother than bare raw substrate (white arrow). At 60%
substrate. From the phase image, the holes (red arrow) can mass coverage, the layer is more ordered and appears in an
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intermediate situation where the dye molecules form both rows
(white arrow) and lower, less ordered regions (green arrow).
The fully covered surface appears smooth with little height
variations. The whole surface is covered in row-like domains,
which are not necessarily aligned (arrows). The phase image
becomes consistently brighter as the surface coverage increases,
indicating the substrate is fully covered at 100% mass coverage.

Interestingly, the dye molecules always spread over all the
space available and never form isolated islands. At 10% mass
coverage, the spreading of the dye molecules prevented
nondestructive imaging (not shown).

The AFM results suggest a change in the molecular
arrangement of the dye molecules on the surface as the dye
coverage increases. The coexistence of two height levels at
intermediate coverage supports this explanation. The formation
of dye rows at higher coverage (also visible in MeCN; Figure
S1, Supporting Information) is consistent with the observations
on the mesoporous TiO, (Figure 1) and coincide with an
increased layer thickness, suggesting that the Z907 molecules
sit with their alkyl chains extended away from the substrate
surface when arranged in rows (Figure 7). This interpretation
would also explain the increased surface density of dye at higher
mass coverage, especially given the fact that the dye molecules
spread over the whole available TiO, at all coverage conditions.

To further explore the atomistic arrangement of the dye film
on the TiO, surface, we performed molecular dynamics
simulations at different dye densities. We simulated 100%
mass coverage using a density of 0.76 molecules/nm” as
obtained from QCM-D measurements. The dye molecules
were arranged on a crystalline anatase (101) TiO, slab with two
layers. Possible binding locations were identified based on
geometric arguments: using an approximate distance between
the two carboxylic groups of a bipyridine moiety of ca. 7 A as a
gauge, we tried to find adsorbing sites on the substrate with the
same distance. Five possible locations were identified, as
displayed in Figure S. The same five locations were confirmed
by random adsorption simulations where dyes initially located
at 10—15 A distance from the surface in vacuum were allowed
to adsorb randomly during the first nanosecond of the
simulation. For each of the five binding locations, a regular
system of 25 dyes adsorbed on the titanium oxide surface was
constructed. After minimization, the lowest energy config-
uration (Site 1 in Table 1) was chosen for conducting further
simulations to study the effect of coverage density on packing.

As a further validation, we performed annealing simulations
of all 5 systems, in which the temperature was raised to 600 K
followed by cooling down to low temperatures. Consistent with
the relative energetics shown in Table 1, dyes located in the
energetically most stable site 1 arrangement remained at their
binding sites, whereas other configurations went through
several transitions between different arrangements (for
configurations with sites S, 2, and 4) and occasionally detached
from the surface (in the case of site 3). An additional parameter
that strongly influences the energetics of the packing is the
orientation of the dye. For instance in the most stable
orientation for site 1, the sulfur atoms are inversely aligned
along the [101] direction, whereas the opposite orientation is
less stable (Supporting Information, Figure S2).

To visualize the effect of dye coverage on the conformation
of the dye layer, we computed a topographic picture of the
system comprising 25 dye molecules averaged over 20 ns of
simulation (Figure 6), comparing 33% mass coverage (0.23
molecules nm™?), 66% mass coverage (0.51 molecules nm™2),

Site3

_ Site5

Site 2

Figure 5. Five possible location sites suitable for simultaneous
anchoring of the carboxygroups of the bipyridine moiety. The Z907
dye always occupies roughly the same (dotted) area in sites 1, 2 and S,
regardless of the selected binding mode inside the ellipse. For site 1,
7907 in its fully protonated structure can make hydrogen bonds with
two 2-coordinated oxygens (O,.). In its deprotonated state, the
bipyridine moiety can make bonds to S-coordinated Ti (Tis.), either
way occupying the same space shown in dots. The same holds true for
site S. For site 2, the bipyridine can be in the salmon-colored ellipse or
the blue one; in either, it can make hydrogen bonds to the same two
ridge oxygens indicated.

Table 1. Relative Energetics for Different Dye Location
Sites” Evaluated for a System Composed of 25 Dyes”

adsorption site relative energetics (kcal/mol dye molecule)

site 1 0

site 2 154
site 3 25.6
site 4 30.8
site S 48.7

“Displayed in Figure S. “The relative energetics was evaluated for a
33% mass coverage system where dye—dye interactions are less
important.

and 100% mass coverage (0.76 molecules nm™2). To change
the mass coverage in the computations, we adjusted the size of
the TiO, slab accordingly and kept the number of dye
molecules constant. At lower densities, one of the lipophilic
alkyl chains is mostly extended parallel to the surface whereas
the other is pointing upward (Figure 7). This leads to a
configuration where the dyes are packed closer to the surface,
that is, the average layer distance is ca. 8.7 A with an average
tilting angle of 38 + 6° of the bipyridine moiety with respect to
the titanium oxide surface. Figure 7 shows that for 100% dye
coverage, the atomic density profile along the z direction has a
shoulder around 13 A, and the probability to find dye atoms
(mostly from the alkyl chains) in this range (13—25 A) is
higher than the one of the 33% mass coverage system (Figure
7d). In fact, at higher densities (66 and 100%), both alkyl
chains of each dye molecule start to be oriented vertically with
respect to the TiO, surface with average dye-layer thicknesses
of approximately 9.0 and 10.2 A and an average tilting angle of
42 + 3° and SS =+ 3° respectively (Figure 7; note that
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Figure 6. Simulated AFM pictures for different mass coverage, (left to right) 33, 66, and 100%. Map of the weighted atomic density of dye
molecules. The map is done by replacing each dye atom with a normalized Gaussian distribution of width (standard deviation) equal to the atomic
radius. The Gaussian distribution for each atom is then weighted with the occupancy. The various Gaussians are added and distributed on a grid
(orange color). The isosurface value is 0.01. The same map with restriction to the parts of dye molecules that are 13—25 A away from the TiO,

surface is shown in the Supporting Information, Figure S7.
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Figure 7. (a—c) Side views of the three systems with different mass
coverage. The tilting angle is indicated with black arrows. When going
to higher mass coverage, more alkyl chains assume an upright position.
(d) The probability of finding dye atoms along the z axis (normal to
the surface) for 20 ns of MD simulation in NVE ensemble.

instantaneous tilting angles shown in the figure for one
snapshot are not necessarily identical to the average values).

As the experimental results in this AFM study and in other
STM studies®” suggest, the TiO, surface templates the dye
arrangement via the binding site, and the packing is less driven
by dye—dye interactions. Simulations results for the low
coverage system (less dye—dye interactions) also show
significant energy differences between different dye arrange-
ments on the TiO, template (Table 1). AFM nanographs at
60% mass coverage suggest the possible coexistence of distinct
domains of dye molecules with the alkyl chains either pointing
away from the surface, or stretched out along the surface.
Indeed our MD simulations results also reflect the coexistence
of quasi parallel and quasi vertical alkyl chains and also show
that the relative population of the two alkyl chain orientations is
density dependent (Figure 7). At low coverage, one alkyl chain
is mostly parallel and one is vertical, while at high coverage
both alkyl chains are found in a quasi vertical configuration.
The intermediate coverage consists of a mixture of dye
molecules with these two main configurations. For this
intermediate coverage range, we also explored few inhomoge-
neous configurations with dye domain formation (Supporting
Information, Figure S3).

In addition, we analyzed the solvent accessibility of the SAM
(Supporting Information, Figure S4). For all three coverages,
the dye molecules reduce the accessibility of the solvent to
TiO, with respect to a dye-free surface (Supporting
Information, Figure S4, left side). This solvent screening sets
in at farther distances and is more effective for higher coverage,
where alkyl chains are positioned more vertically and the
monolayer thickness is larger.

Besides the conformational change of the alkyl chains with
respect to the surface, MD simulations at nominal 100% dye
coverage also indicate that the binding location of the
molecules close to maximum coverage can be altered. In the
areas with densely packed arrangements, dyes encumber each
other, forcing their neighbors to take positions that are not
usually energetically preferred (in terms of adsorption sites)
and can even detach from the surface at higher temperatures
(Supporting Information, Figure SS).

4. DISCUSSION

Results from AFM measurements and MD computations both
indicate that the amphiphilic Z907 dye covers most of the TiO,
surface already at 33% mass coverage by stretching out its alkyl
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chains along the TiO, surface. For 100% weight coverage,
experiment and simulation show that the molecules form a
densely packed monolayer, with both alkyl chains adapting an
upright conformation. This microscopic observation confirms
the common understanding that alkyl chains can shield the
TiO, surface in applications like dye-sensitized solar cells, and it
elucidates the way in which they do.

Our observation of two different types of conformation of
the dye molecules matches well with previous findings on
anisotroIpic dye molecules by combined NEXAFS and PES
studies;'®* our measurement offers an independent con-
firmation by a direct and complementary AFM observation in a
relevant liquid environment. The existence of two adsorbed
conformations is reminiscent of the well-known “flat lying” and
“standing” molecular configurations of alkanethiols SAMs on
gold.** The analogy with the present case is nonetheless not
obvious, given the important differences in the type of bond
formed between the dye and the substrate.

Our measurements also provide high-resolution lateral
information (i.e., conformity and homogeneity of the film at
high mass coverage). Considering the amphiphilic nature of the
7907 molecule, these findings could remain valid for surfactant
adsorption at low concentration in general.

In the particular case of dye-sensitized solar cells, the staining
of mesoporous TiO, is carried out at high Z907 dye
concentration (250 uM). However, it is known that it takes
several hours for the dye to reach the bottom of a mesoporous
film, and even lonsger to fully saturate the dye uptake in the
mesoporous film.*>* This indicates that during the staining
process, all of the different conformations and different degrees
of mass coverage are present in part of the mesoporous TiO,
film. This implies that the results derived by QCM-D and AFM
on flat model systems provide meaningful insights that are
relevant to the mesoporous system. In particular, amphiphilic
sensitizers can effectively cover the TiO, surface already at low
mass coverage, so the shielding of the TiO, from the electrolyte
can be effective even if the staining of deeper layers of the
mesoporous TiO, film is incomplete. Practically, this would
result in a working device with good fill factor and
photovoltage, but the photocurrent would be inferior to a
similar device in which 100% dye mass coverage was achieved.
On both flat and mesoporous TiO,, we consistently observe
monolayers of Z907, not agglomerations.'” We observed dye
agglomerations only upon special sample preparation proce-
dures (e.g, when the rinsing of the sample was omitted).
Furthermore, the existence of molecular rows could be
observed on both the flat and mesoporous substrates by
AFM in EiPS, supporting the generality of our findings in
different electrolytes. The observation of two different
conformations is in fact further supported by the two-step
adsorption kinetics that are often observed in DSCs.>”*’

In the more general sense, it is very encouraging that the
computational method produces good agreement with the
results of the AFM study. The MD simulation only used the
quantitative input on the number of dye molecules per area, as
obtained experimentally from the QCM-D mass coverage.
Computations then produced a detailed description of the
adsorbed molecular film in liquid environment, which
corresponds very well to the experimental data obtained
independently by AFM. The AFM study presented here is at
the limit of the resolution that can currently be achieved on
molecular films in a relevant liquid environment, but the model
at the basis of the MD simulation may still describe the

behavior of molecular films correctly at a level that is beyond
the resolution of current experimental methods.

5. CONCLUSION

In this study, we have combined high-resolution AFM, QCM-
D, and MD simulations to elucidate the molecular arrangement
of the Z907 dye molecules at the surface of TiO, in a
functionally relevant liquid. Our results detail the formation of
the dye monolayer, showing several molecular conformations
on the surface at different dye concentration.

Future work will address molecular films that consist of
functional molecules co-adsorbed with chelating agents such as
bile acids (e.g., porphyrin sensitizers and cheno deoxycholic
acid), where the nature of interaction and the arrangement of
dye and co-adsorbate within the sensitizing film still wait to be
unveiled.
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